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Abstract. A formalism based on the theory of distributions associated with the Borel or Poisson’s
transformations is developed for obtaining fundamental solutions for point sources immersed in
a hydrodynamical warm plasma. The method allows an analytical solution of the linear Klein–
Gordon differential equation. Algebraic solutions of electrostatic radiation problems, expressed in
term of two-variable Lommel functions are proposed.

1. Introduction

The Klein–Gordon equation is of great interest in physics. Being the simplest of the energy-
preserving dispersive hyperbolic differential equations, it serves as a useful mathematical
model for several physical phenomena. For example, the solution of this equation and
some related forms can be used to describe the vertical propagation of waves in a stratified
atmosphere, waves on strings with elastic supports, waves in magnetic flux tubes, Alfvén waves
under certain propagation conditions and electromagnetic waves in cold plasma and in plane
parallel wave guides.

Related to the problem of acoustic gravity wave propagation in the atmosphere, Robinson
[1] has recently reported some characteristics of what are termed algebraic solutions for the
Klein–Gordon equation. These solutions involve special functions and they are referred to as
algebraic in order to distinguish them from the more familiar harmonic or modal solutions.
The impulsive excitation of longitudinal waves by an external point source immersed within
an isotropic warm plasma has been re-examined more recently [2]. It is true that this mode
of the plasma satisfying the Bohm–Gross dispersion relationship [3] may be described by
the Klein–Gordon equation. However, for the electric wave field to behave curl-free, it
is necessary that the expected potential response is governed by Poisson’s equation. The
simplest propagation equation including the above-mentioned characteristics should be a
higher-order partial differential equation which contains both Laplacian and Klein–Gordon
operators. Starting from such an equation, the response of the plasma may be expressed in
terms of Lommel functions of two real variables [4]. This exact algebraic expression can be
regarded as an infinite sum of the Robinson-type solutions.

This paper is concerned with obtaining previous results on an impulsive excitation of
the Bohm–Gross waves [2]. Later, the analysis is extended to the problem of electrostatic
wave generation by a causal and forced pulsatory point charge of semi-infinite duration, which
may be used to exemplify a physically more realistic situation than the idealized impulsive
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excitation. The Laplace transform technique is much in favour among plasma physicists and
others as a tool for obtaining the algebraic solution for such transient excitations, but here, in
the light of Robinson’s work [1], an alternative approach based on the theory of distributions
(or generalized functions) is proposed. As a consequence, our main interest here turns out to
be in a detailed description of the computational procedure. The investigation of the physical
problem under consideration is used to highlight the main aspects underlying the relevance of
the formalism.

One of the key points of the technique consists of an exact expansion of the driving term
of the nonhomogeneous evolution equation as a series of the generalized time derivatives of
the impulse distribution. For a wide class of real-valued and infinitely differentiable functions,
such an expansion can be obtained by means of the so-called Poisson transform method [5, 6].
The solution which is obtained from the linear superposition procedure is then expressed
as a summation of successive distributional derivatives of the Green function (fundamental
solution) of the Klein–Gordon equation. The necessary condition for this approach to be valid
depends upon the convergence of the resulting infinite series. If, in some situations, such
a condition is not fulfilled, the formalism can be modified to deal with the difficulty in the
following way. Expanding the source term as a Taylor series about the origin of the time or
space variable, the solution is shown to be a series of multiple iterated smoothing integrals of
the Green function.

In the second part of the paper, basic assumptions and the equations governing uncoupled
cold and warm plasma are presented. The method of solution which refines and generalizes
the previous formalism of obtaining the response of a system governed by a nonhomogeneous
linear Klein–Gordon equation is developed in section 3. As a first application, the algebraic
solution of the problem of an impulsive delta function in time excitation (Green’s function) of
the Bohm–Gross wave is then recalled in section 4. Sections 5 and 6 deal with the switch-on
harmonic in time excitation problem in the cases of dilute and dense plasma, respectively.
Summary and concluding remarks close the paper in section 7.

2. Set of propagation equations

For the sake of simplicity, an electron hydrodynamical, isotropic and infinite plasma which is
maintained globally neutral by the presence of a background of fixed positive ions is considered.
The excited waves are supposed to be longitudinal, so the system may be characterized by a
self-consistent set of hydrodynamical relations (i.e. conservation of mass and conservation
of momentum) and Poisson’s equation. The time derivative of the continuity equation and
the force equation can be combined to yield a governing equation for the density fluctuations
(see e.g., [7, 8]). Then, eliminating the density by use of Poisson’s equation, we can show
that the electric wave field potentialφ(r, t) satisfies the generalized Klein–Gordon differential
equation given by(

∂2

∂t2
+ ω2

p − c2
T∇2

)
∇2φ(r, t) =

(
∂2

∂t2
− c2

T∇2

)
∇2φext (r, t) (2.1)

whereωp denotes the plasma frequency,c2
T = (3V 2

T /2) specifies the thermal speed,VT ,
of the electronic fluid, andφext (r, t), the externally applied electric potential. Setting
χ(r, t) = [φ(r, t) − φext (r, t)] as a new dependent variable in (2.1) and rearranging, we
may rewrite this equation as(

∂2

∂t2
+ ω2

p − c2
T∇2

)
∇2χ(r, t) = ω2

p

εo
Qext (r, t). (2.2)
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Here, the external charge distributionQext (r, t), related to the external potential and the
free space permittivityεo has been introduced in (2.2) through Poisson’s equation,∇2φext +
Qext/εo = 0. Also, it will be assumed that fort < 0, the external potentialφext ≡ 0, hence the
perturbations of the plasma are ‘causal’ and disappear in this region. This assumption destroys
the reversible character of the present non-dissipative description. Also, we consider a punctual
charge distribution source localized at the origin of the space coordinates, thusQext (r, t)may
be expressed as the product ofδ3(r), the three-dimensional Dirac delta function and an arbitrary
function of time.

As in conventional problems, it is convenient to deal with uncoupled simplest systems
rather than the composite Laplacian and Klein–Gordon differential operators on the left-hand
side of (2.2). The separation of the problem is expected since in the case of a steady-state
sinusoidal approximation, Rooyet al [9] showed that the response of the plasma, subject to
an external forcing charge, can be represented by means of a superposition of the cold plasma
oscillations and Bohm–Gross (i.e. warm plasma) wave. Defining the dependent variable as a
summation of two terms,χ(r, t) = χC(r, t) + φBG(r, t), equation (2.2) is equivalent to the
set of partial differential equations,

∇2χC(r, t) = S(r, t) (2.3)

and (
−∇2 +

1

c2
T

∂2

∂t2
+
ω2
p

c2
T

)
φBG(r, t) = S(r, t) (2.4)

where the free term takes the form

S(r, t) = (ωp/εo)H(t) sin(ωpt) ∗t Qext (r, t) (2.5)

and where the symbol∗t is the operation of convolution with respect to time, andH stands
for the unit step function of Heaviside. This separation into a set of equations (2.3) and (2.4)
is most easily demonstrated with the aid of the commonly used Laplace transform method
(see [2]). Notice that the termH(t) sin(ωpt)/ωp on the right-hand side of (2.5) is the causal
Green function related to the linear differential operator(∂2/∂t2 +ω2

p), hence the convolution
operation turns out to be symbolically equivalent to the application of the inverse of this
operator. The total solutionχ(r, t) has the unphysical property that the information propagates
at arbitrary high speed. This instantaneous response of the plasma stems from the quasistatic
approximation used in the present description.

A distinction must be drawn in the following sections between types of external charges.
The first type, a finite-amplitude impulse, is exemplified by a delta function charge in time and
space

Q
[δ]
ext (r, t) = qoδ3(r)δ(t). (2.6)

Hereqo is a constant, andδ denotes the single variable Dirac delta function. The second type
of charge, one which is switched on and maintained quasi-indefinitely, is exemplified by the
switch-on of continuous oscillatory excitation

Q
[c]
ext (r, t) = qoδ3(r)H(t) sinωot (2.7)

whereωo is the transmitter angular frequency. In the present treatment, we are concerned with
both dilute,ωo > ωp, and overdense plasma,ωo 6 ωp.

3. Method of solution

First, we examine the perturbation related to the Bohm–Gross longitudinal wave. This response
is the solution of the nonhomogeneous differential equation (2.4). Cauchy data prescribed
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at t = 0, will be hereφBG(r, 0) = (∂/∂t)φBG(r, 0) = 0. If we consider a spherically
symmetrical solution and opt for a new dependent variableψ(r, t) = rφBG(r, t), then (2.4)
reduces to a partial differential equation in one space variable:

Lψ(r, t) ≡
(
− ∂

2

∂r2
+

1

c2
T

∂2

∂t2
+
ω2
p

c2
T

)
ψ(r, t) = rS(r, t). (3.1)

In (3.1) and in what follows, the symbolL denotes the one-dimensional linear Klein–Gordon
operator, andr stands for the modulus of the position vectorr.

Robinson [1] discussed the general solution of the homogeneous Klein–Gordon equation,
Lg(r, t) = 0. It has been shown that an allowable arbitrary solution to this partial differential
equation may be expressed as an infinite series given by

g(r, t) =
∞∑

n=−∞
αngn(r, t)

with

gn(r, t) = −cT H(t − r/cT )
(
t − r/cT
t + r/cT

)n/2
Jn(ωp(t

2 − r2/cT
2)1/2) (3.2)

theαn being arbitrary coefficients andJn, the cylindrical Bessel function of ordern. Noticing
that for the particular case,n = 0, the functiong0(r, t) constitutes simultaneously the classical
and fundamental solution to the homogeneous and the associated inhomogeneous Green
function equation, respectively, this author deduced (see appendix A) that for the equation

Lϕ(r, t) = f (r, t) = δ(j)(r)δ(k)(t) (3.3)

whereδ(i)(u) is theith generalized derivative with respect to the argument ofδ, the solution is

ϕ(r, t) = ∂j+kg0(r, t)

∂rj ∂tk
(3.4)

where

g0(r, t) = −cT H(t − r/cT )J0(ωp(t
2 − r2/cT

2)1/2). (3.5)

Stated in this form, the outlined prescription applies to our problem if the free term on the
right-hand side of (3.1) can be expanded into a linear combination of derivatives of the basic
impulse function. Green and Messel [10] considered the expansion of any suitable function in
a series of higher-order impulse distribution functions. The coefficients of the expansion are
known to be related to the moments of the function under consideration. Subsequently, the
method used by these authors appeared in the literature as the technique of Poisson’s transform
[5, 11, 12], some fundamental definitions and properties of which have been discussed by
Fairman and Piovoso [13]. Note also that theorems relating the Poisson and Laplace transforms
of functions are well established [6]. However, one of the simplest way to derive such series
expansions is to notice that any function of time may be thought as a convolution betweenδ

and the function itself. Then the algorithm commonly used for the evaluation of a convolution
integral, proposed, for example, in [14], can be applied. The desired result consists then of a
series in terms of the derivatives of the Dirac delta function and the moments of the transformed
function. Because of the linear character of the description at hand, the superposition theorem
applies, and the solution of (3.1) is deduced from the related infinite series of higher derivatives
of the fundamental solution ofL as

ψ(r, t) =
∞∑
n=0

(−1)n
an

n!

∂ng0(r, t)

∂tn
(3.6)
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with

an =
∫ ∞

0
tn1 [rS(r, t1)] dt1

being thenth moment of the source term.
According to the definition in (3.5), it is clear thatg0(r, t) is a generalized function, and it

has a jump or simple discontinuity att = (r/cT ). The differentiation operation used in (3.4)
is understood as the distributional derivative. It is worth noting that, without regard to the
discontinuity, the general relationship betweengn(r, t) in (3.2) and all its derivatives is now
well established [1]. Infinite series ofgn functions are then expected to represent the solution
of the considered problems.

One can extend the method to negative integer powers−j of the delta function on the
right-hand side of (3.3). The functionδ(−j), j > 1, is then aj -fold repeated integral ofδ, and
by a similar approach as in (3.4), the solution becomes a repeated integral ofg0(r, t). In order
to find the linear response of the system, we develop the source term,S(r, t), in a power series
of one of its arguments (sayt). Then, the Klein–Gordon fundamental solution is convolved
with each term of the resulting series. The Dirichlet’s integral formula [15, 16]

1

(n− 1)!

∫ t

0
f (t1)(t − t1)n−1 dt1 =

∫ t

0

∫ tn

0
. . .

∫ t2

0
f (t1) dt1 dt2 . . .dtn (3.7)

is applied to transform the time development of the solution. At once, the response of the
plasma has the following series representation:

ψ(r, t) =
∞∑
n=0

bn

∫ t

0

∫ tn+1

0
. . .

∫ t2

0
g0(r, t1) dt1 dt2 . . .dtn+1 (3.8)

with bn = [∂n(rS(r, t))/∂tn]t=0, thenth order derivative of the source term evaluated att = 0.
In due course, we shall address the problem of how to deal with the multiple iterated integrals
of the fundamental solutiong0(r, t).

Note that if an arbitrary functionf (t) has the Taylor series expansionf (t) =∑∞
n=0(bn/n!)tn, then one can define the related series(Bf )(τ ) = ∑∞n=0 bnτ

n. The function
Bf is the Borel transform off . A relatively wide class of space and time variation function
may be expressed as either Borel or Poisson’s transformation series, but we must add that the
necessary condition for the present method to be valid depends upon the convergence of the
series (3.6) or (3.8). Here, the technique will be applied to the problem of the longitudinal
warm plasma wave excitation. We shall see that, in order to find the form of the solution for
different parameter values of the plasma, the present example gives an opportunity to explore
the method in both the above-mentioned forms, i.e. (1) use of series of higher-order derivatives
and (2) the multiple integrals series of the fundamental function.

4. Response to a temporal impulsive perturbation

4.1. Cold plasma response

The perturbation source is activated impulsively at timet = 0 within the plasma. The charge
distribution takes the formQ[δ]

ext (r, t). Substituting relation (2.6) into (2.5) and Poisson’s
equation (2.3), we obtain the expressions for the externally applied electric potential and the
source term of the coupled governing equations as

φ
[δ]
ext (r, t) =

qo

4πεor
δ (t) (4.1)

S [δ](r, t) = qo

εo
ωpδ3(r)H(t) sin(ωpt). (4.2)
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Then, the solution of (2.3) with (4.2) may be calculated and the cold plasma response to the
impulsive excitation is given by

χ
[δ]
C (r, t) = −

qo

4πεor
ωpH(t) sin(ωpt). (4.3)

We see from (4.3) that the disturbance consists of time oscillations which cover instantaneously
the entire region of the plasma.

4.2. Warm plasma longitudinal wave

We now examine the perturbation related to the Bohm–Gross longitudinal wave using the
formalism described in the previous section. First, it is obvious to show that

S [δ](r, t) = qo

4πεo

δ(r)

r2

∞∑
k=0

(−1)k

ω2k
p

δ(2k)(t). (4.4)

In (4.4), the three-dimensional delta function has been transformed into a one-dimensional one
using the spherical symmetry of the system. Moreover, by the identity,rδ′(r) = −δ(r), the
space variation of the source term of (4.4) reduces to a first derivative of the impulse function
with respect tor. As a result, the algebraic solution of our problem will consist of an infinite
series of the derivatives ofg0(r, t), and we may write thatψ [δ](r, t) = (qo/4πεo)9 [δ](r, t),
where the function9 [δ](r, t) takes the formal expression

9 [δ](r, t) =
∞∑
k=0

(−1)k

ω2k
p

(
∂2kh(r, t)

∂t2k

)
(4.5)

with

h(r, t) =
(
∂g0(r, t)

∂r

)
. (4.6)

It is clear that the reduced electric potential,9 [δ](r, t), may also be put as a series of
Bessel functions or a two-variable Lommel function [2]. To find such an expression, we must
calculate the successive derivatives of the fundamental solution,g0(r, t), of the inhomogeneous
Klein–Gordon equation.

Both functionsg0(r, t) andh(r, t) are infinitely differentiable on the realt line except at
the point(r/cT ), where only left- and right-hand derivatives exist. In what follows, we denote
by [∂f/∂t ], [∂2f/∂t2], etc, the functions obtained by differentiatingf (r, t) without regard to
the jump, and let the discontinuity in [∂mf/∂tm] at the jump be1f (m). Then we have [17]

h(r, t) = h1(r, t)− 1

cT
δ

(
t − r

cT

)
1g

(0)
0 (4.7)

with the notationh1(r, t) = [∂g0/∂r], and form > 1,

∂mh1

∂tm
=
[
∂mh1

∂tm

]
+
m−1∑
j=0

1h
(m−1−j)
1

∂j δ(t − r/cT )
∂tj

. (4.8)

We substitute (4.8) in (4.5) and rearrange the resulting double summation using the relation
∞∑
k=0

k∑
j=0

uj,k−j =
∞∑
j=0

∞∑
k=0

uj,k. (4.9)

Then, making use of Poisson’s transformation formulae

H(t) sin(ωpt) = 1

ωp

∞∑
n=0

(−1)n

ω2n
p

δ(2n)(t) (4.10)
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and

H(t) cos(ωpt) = 1

ω2
p

∞∑
n=0

(−1)n

ω2n
p

δ(2n+1)(t) (4.11)

we obtain the following expression for the space and time variation of the electric potential
defined by (4.5)

9 [δ](r, t) = F(r, t)−H(t − r/cT ){D1(r) cos[ωp(t − r/cT )] + D2(r) sin[ωp(t − r/cT )]}
(4.12)

with

F(r, t) =
∞∑
k=0

(−1)k

ω2k
p

[
∂2kh1

∂t2k

]
(4.13)

D1(r) =
∞∑
k=0

(−1)k

ω2k
p

1h
(2k)
1 (4.14)

and

D2(r) = ωp

cT
1g

(0)
0 +

1

ωp

∞∑
k=0

(−1)k

ω2k
p

1h
(2k+1)
1 . (4.15)

In (4.12), we note that the last two terms which contain the functionsD1(r) andD2(r),
respectively, represent the proper contribution of the jump. They embody the effects of
the discontinuity att = (r/cT ) of all the derivatives of the generalized functiong0(r, t).
The following equalities are easily established:D1(r) = δ(t − r/cT )F(r, t), andD2(r) =
−ωp +ω−1

p δ(t − r/cT )[∂F(r, t)/∂t ]. OnceF(r, t) is known, we can obtainD1(r) andD2(r).
To proceed further, we refer again to Robinson’s note [1] which employs Schläfli’s integral

formula to write any functiongn(r, t) defined in (3.2) in the form

gn(r, t) = cT

π
H(t − r/cT )

∫ π

0
eωp(r/cT ) cosζ cos(ωpt sinζ − nζ ) dζ. (4.16)

This representation is particularly advantageous in certain aspects of the handling ofgn-
functions since the time and space variables are separated in (4.16). This leads to simplification
in obtaining their higher-order derivatives. In particular, if we setn = 0, by a successive
differentiation under the integral sign in (4.16), and then interchange the operations of
integration and summation with respect tok, we can show that

F(r, t) = 2ωpH(t − r/cT ) 1

π

∫ π

0
eωp(r/cT ) cosζ cosθ + cos(θ + 2ζ )

2 + 2 cos 2ζ
dζ (4.17)

where the notation,θ = (ωpt sinζ − ζ ), has been used for convenience. Such an integral may
then be converted back to an infinite series if we make use of the formula [18]

cosθ − κ cos(θ − 2ζ )

1− 2κ cos 2ζ + κ2
=
∞∑
n=0

κn cos(θ + 2nζ ). (4.18)

Here, the parameterκ = −1. Using (4.18) in (4.17), a simple identification of each term of
the series enables us to infer the following results forF(r, t),D1(r), andD2(r):

F(r, t) = 2ωpH(t − r/cT )
∞∑
n=0

(−1)n
(
t − r/cT
t + r/cT

)−(n+ 1
2 )

J2n+1(ωp(t
2 − r2/cT

2)1/2). (4.19)



2004 O C Randriamboarison

D1(r) = −2ωp sin(ωpr/cT ), andD2(r) = −2ωp cos(ωpr/cT ). The contribution of the
jump, as defined in (4.12), reduces at once to the simple trigonometric function, 2ωpH(t −
r/cT ) sin(ωpt). By virtue of the identity [4]

∞∑
n=−∞

(−1)n
(
x

y

)2n+1

J2n+1(y) = sin

(
x

2
+
y2

2x

)
we condense both the negative power series (4.19) and the sine function associated with the
discontinuity ofg0(r, t) as a single series. The relation (4.12) leads, therefore, to the expression

9 [δ](r, t) = ωpH(t − r/cT )2
∞∑
n=0

(−1)n
(
t − r/cT
t + r/cT

)n+ 1
2

J2n+1(ωp(t
2 − r2/c2

T )
1/2). (4.20)

In the same manner as in our previous paper [2], it turns out that the Bohm–Gross response
to an impulsive excitation may be expressed quite simply in terms of a first-order Lommel
function of two real variables as [4]

φ
[δ]
GB(r, t) =

qo

4πεor
ωpH(t − r/cT )2U1(ωp(t − r/cT ), ωp(t2 − r2/c2

T )
1/2). (4.21)

There are occasions when it is advantageous to employ expression (4.21) rather than the
equivalent series inferred from (4.20). First, for numerical computation, Buckley [19] used
a direct summation of the Bessel functions series. However, the usefulness of this technique
was somewhat limited since some tricks are involved in the practical calculation of the series,
notably for large arguments [20], whereas some improved algorithms for computation of
Lommel functions are now available ([2] and references cited therein). The second point is
partially a consequence of the previous one, because local or asymptotic forms of the response
may be readily deduced from the expression (4.21). They can be used effectively to gain some
more understanding of the physical mechanism of the wave radiation and propagation. Results
of such an insight into the Bohm–Gross wave dynamics were presented comprehensively in
[21]. In this paper, however, the space-time variation of the amplitude of the reduced Bohm–
Gross wave potential,ω−1

p 9
[δ](r, t) (see (4.20)) is given in figure 1. Here, the normalized

time is defined byωp(t− r/cT ), whereas the normalized distance is defined byωp(r/cT ). The
envelope of the generated signal, at a fixed position in space, consists of a monotonous rising
curve whose maximum is localized att = +∞.

5. Response to a continuous excitation in a dilute plasma

We shall next consider a situation in which a sinusoidal excitation of semi-infinite duration is
applied to the plasma. Obviously, the externally applied electrostatic potential can be written
as

φ
[ω]
ext (r, t) =

qo

4πεor
H(t) sin(ωot) (5.1)

and the driving term of the governing equations (2.3) and (2.4) takes the form

S [ω](r, t) = qo

εo

ωp

ω2
o − ω2

p

δ3(r)H(t)[ωo sin(ωpt)− ωp sin(ωot)] (5.2)

that corresponds to the convolution product (2.5), the external charge varying in time as (2.7).
Note that a pulsating source of finite time duration is the most likely kind of signal which

occurs in practice. In such a situation, the response of the plasma may be deduced as a linear
combination of the solution proposed here. This interpretation follows if we consider the time
course of the source of finite durationT as a difference between two oscillatory unit step
functions, one occurring att = 0 and the other att = T .
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Figure 1. Space-time variation of the envelope curve of the functionω−1
p 9 [δ](r, t) (see (4.20)).

The definition of the normalized time and the normalized distance is given in the text.

The cold plasma response may again be obtained by a straightforward integration of
convolution of two simple sine functions. The result takes the form

χ
[ω]
C (r, t) = qo

4πεor
H(t)[Po sin(ωot)− Pp sin(ωpt)] (5.3)

with

Po =
ω2
p

ω2
o − ω2

p

and Pp = ωoωp

ω2
o − ω2

p

.

The response consists then of instantaneous beating oscillations of the external antenna
vibrations and the cold plasma eigenmode.

In order to derive the Bohm–Gross response of the plasma, we express the source term
(5.2) as a series expansion of derivatives of the delta function. It is easily shown that

S [ω](r, t) = qo

4πεo

δ(r)

r

ωp

ω2
o − ω2

p

[
ωo

ωp

∞∑
k=0

(−1)k

ω2k
p

δ(2k)(t)− ωp
ωo

∞∑
k=0

(−1)k

ω2k
o

δ(2k)(t)

]
. (5.4)
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Further, the space and time evolution of the solution of the propagation equation (2.4) may be
formally deduced from the formula

9 [ω](r, t) = ωp

ω2
o − ω2

p

[C1(r, t)− C2(r, t)] (5.5)

where the following abbreviations have been introduced:

C1(r, t) = ωo

ωp

∞∑
k=0

(−1)k

ω2k
p

∂2kh(r, t)

∂t2k
(5.6)

C2(r, t) = ωp

ωo

∞∑
k=0

(−1)k

ω2k
o

∂2kh(r, t)

∂t2k
. (5.7)

We recall that the functionh(r, t), as it is defined in (4.6) is nothing but the first derivative inr of
the fundamental solution,g0(r, t), of the Klein–Gordon equation. Up to now, no condition on
the value of the exciting frequency as compared with the plasma frequency has been required.
It is easy to see that for the convergence of the series in (5.7) and for the validity of the present
method, the necessary condition isωo > ωp.

Since the algebraic expression of the functionC1(r, t) in (5.6) may be straightforwardly
determined using the same procedure as in section 4 (see equation (4.5)), we have

C1(r, t) = 2ωoH(t − r/cT )U1(ωp(t − r/cT ), ωp(t2 − r2/c2
T )

1/2). (5.8)

Directing our attention to the second functionC2 (r, t) in (5.7) this term becomes, similar to
(4.12),

C2(r, t) = F ′(r, t)−H(t − r/cT ){D′1(r) cos[ωo(t − r/cT )] + D′2(r) sin[ωo(t − r/cT )]}
(5.9)

with

F ′(r, t) =
∞∑
k=0

(−1)k

ω2k
o

[
∂2kh1

∂t2k

]
. (5.10)

D′1(r) = δ(t− r/cT )F ′(r, t), andD′2(r) = −ωo +ω−1
o δ(t− r/cT )[∂F ′(r, t)/∂t ]. The function

h1(r, t) has been defined in (4.7). With the help of the integral representation (4.16), we imitate
the procedure used in the above section to express (5.10) as an integral. That is,

F ′(r, t) = −ωpH(t − r/cT ) 1

π

∫ π

0
eωp(r/cT ) cosζ cosζ cos(ωpt sinζ )

×
∞∑
k=0

((ωp/ωo)
2 sin2 ζ )k dζ. (5.11)

Removing the series outside the integration operation, and introducing the parameter,β =
cosh−1(ωo/ωp), we have

∞∑
k=0

((ωp/ωo)
2 sin2 ζ )k = 4e−2β cosh2 β

1 + 2e−2β cos 2ζ + e−4β
. (5.12)

The function goes back to a series representation if we use the formula (see [18] p 94
formula 501)

cosζ

1− 2κ cos 2ζ + κ2
= 1

1− κ
∞∑
n=0

κn cos[(2n + 1)ζ ] (5.13)
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with the understanding thatκ = − exp(−2β) < 1. Equation (5.11) thus takes the equivalent
form given by

F ′(r, t) = −ωpH(t − r/cT )
∞∑
n=0

(−1)ne−2nβ 1 + e−2β

2

×
[

1

π

∫ π

0
eωp(r/cT ) cosζ cos[ωpt sinζ + (2n + 1)ζ ] dζ

+
1

π

∫ π

0
eωp(r/cT ) cosζ cos[ωpt sinζ − (2n + 1)ζ ] dζ

]
. (5.14)

The transformation ofF ′(r, t) in terms of Lommel functions readily follows with the aid
of Schl̈afli’s integral formula (4.16). On the other hand, we can show that,D′1(r) =
−ωo sin(e−βωp(r/cT )), and D′2(r) = −ωo cos(e−βωp(r/cT )). After some elementary
transformations and algebra, the above results lead to the potential given by

φ
[ω]
BG(r, t) =

qo

4πεor

ωp

ω2
o − ω2

p

[C1(r, t)− C2(r, t)] (5.15)

whereC1(r, t) has been defined in (5.8) andC2(r, t) is expressed in terms of Lommel functions
of two real variables as well. The solution consists of the particular limit when the collision
may be neglected in the general result given by Randriamboarison [21]. This result may be put
in a more suitable representation in which the steady-state term is separated from the transients.
That is,

C2(r, t) = ωpH(t − r/cT )[sin(ωot − kor)−ϒ(r, t)] (5.16)

where,ko = c−1
T (ω

2
o − ω2

p)
1/2, stands for the modulus of the wavevector deduced from the

Bohm–Gross dispersion relation, and

ϒ(r, t) = U1(ωpe−β(t + r/cT ), ωp(t
2 − r2/c2

T )
1/2)

−U1(ωpe−β(t − r/cT ), ωp(t2 − r2/c2
T )

1/2). (5.17)

The functionC1(r, t) is a solution of the homogeneous linear equation associated with (2.4)
subject to the initial conditions imposed by the problem. One can obviously show that, when
added to the second term on the right-hand side of (5.3), this solution vanishes ast tends to
infinity, and defines a transient response of the plasma. On the other hand, the component
term which involves theϒ(r, t) is important only during the earlier stage of the time evolution
of the signal, and it settles down to a negligible value whent � 1. The availability of the
exact form of these transient responses is of essential interest in some physical applications.
Their time decay may indeed be used to state the validity condition for the classical harmonic
approximation description of the wave excitation (see [21]). As an example, we present in
figure 2 the space-time variation of the envelope of the normalized function,ω−1

p C2(r, t), which
may be regarded as the Bohm–Gross wave density during its propagation. The wave is excited
by an oscillatory charge at the frequency(ωo/ωp) = 1.2. The steady-state approximation is
valid if the magnitude of the ripples observed at the plotted surface may be neglected. It is
apparent in figure 2 that this condition depends on the distance from the transmitter and the
observation point.

6. Response to a continuous excitation in a dense plasma

The power of the present formalism is not completely demonstrated without showing its
effectiveness in the explicit display of the overdense plasma excitation. However, following
the same procedure as in section 5, a complication arises in the case whereωo < ωp. Indeed, at
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Figure 2. Spatio-temporal evolution of the envelope curve of the functionωp
−1C2(r, t) (see (5.16)).

At ultimate time, this function describes the dynamics of the steady-state Bohm–Gross wave. Here,
the excitation consists on a pulsatory external charge at a frequency such as(ωo/ωp) = 1.2.

first sight, the convergence of the infinite series under the integral sign of (5.11) seemsa priori
to be not guaranteed. We can circumvent such an obstacle by use of the following approach.

We recall the notation of (4.7),h1(r, t) = [∂g0/∂r]. This function may be put in the form

h1(r, t) = −2ωpH(t − r/cT ) 1

π

∫ π/2

0
sinh[ωp(r/cT ) cosζ ] cosζ cos(ωpt sinζ ) dζ (6.1)

where the integration now runs from 0 toπ2 . Equation (6.1) is then split into the sum of

two integrals. We seth1(r, t) = h
[1]
1 (r, t) + h[2]

1 (r, t); the component terms are obtained by
decomposing the interval of integration into [0, ( π2 −α)] and [( π2 −α), π2 ], respectively, where

α = cos−1(ωo/ωp). (6.2)

According to (5.4), we now write

C2(r, t) = ωp

ωo
{ωoH(t − r/cT ) sin[ωo(t − r/cT )] + H1(r, t) +H2(r, t)} (6.3)

with the notations

H1(r, t) =
∞∑
k=0

(−1)k

ω2k
o

(
∂2kh

[1]
1

∂t2k

)
(6.4)
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and

H2(r, t) = ωoH(t) sin(ωot) ∗t h[2]
1 (r, t). (6.5)

Proceeding globally along the same lines as in section 5, the function in (6.4) may be put in
the form

H1(r, t) = F1(r, t)−H(t − r/cT )
×{A[1]

1 (r) cos[ωo(t − r/cT )] + A[1]
2 (r) sin[ωo(t − r/cT )]} (6.6)

whereF1(r, t) is expressible as

F1(r, t) = −4
ω2
p

ω2
o

cos2 αH(t − r/cT )
∫ π/2−α

0
u(r, t, ζ )dζ (6.7)

the integrand of which is the rational fraction of trigonometric functions:

u(r, t, ζ ) = 1

π
sinh[ωp(r/cT ) cosζ ]

cosζ cos(ωpt sinζ )

cos 2α + cos 2ζ
. (6.8)

Moreover, in (6.6), we have used the notationsA[1]
1 (r) = δ(t − r/cT )F1(r, t) andA[1]

2 (r) =
ω−1
o δ(t−r/cT )[∂F1(r, t)/∂t ]. The functionF1(r, t) is the sum of all successive odd derivatives

ofh[1]
1 (r, t)without considering its discontinuity, and the remaining two terms on the right-hand

side of (6.6) constitute the contribution of the discontinuity att = (r/cT ).
On the other hand, the corresponding integrals associated with the termH2(r, t) in (6.5)

may be displayed if we expand the source term as a power series oft using Taylor expansion
or Borel’s representation. That is,

sin(ωot) =
∞∑
k=0

(−1)k

(2k + 1)!
ω2k+1
o t2k+1. (6.9)

We make use of Dirichlet’s integral formula (3.7) to express the time convolution of each term
of this series and the functionh[2]

1 (r, t). That is, forn = 2(k+1), k > 0, we define the function
Ik(r, t) as

Ik(r, t) = 1

(2k + 1)!

∫ t

0
(t − t1)2k+1h

[2]
1 (r, t1) dt1

=
∫ t

r/cT

∫ t2(k+1)

r/cT

. . .

∫ t2

r/cT

h
[2]
1 (r, t1) dt1 dt2 . . .dt2(k+1)

=
∫ t

r/cT

. . .

∫ t

r/cT

h
[2]
1 (r, t)(dt)

2(k+1). (6.10)

It has been assumed in (6.10) thath
[2]
1 (r, t) ≡ 0 for t < (r/cT ). In section 5, it was seen that the

discontinuity of the fundamental solution contributes significantly to the complete expression
of the plasma response. An explicit elucidation of higher-order time integrals of the function
h

[2]
1 (r, t), considering its simple jump at the pointt = (r/cT )has been performed in appendix B.

Upon integratingh[2]
1 (r, t) with respect to the variablet , the tricky factor,(ωp sinζ ) is now

injected into the denominator of the integrand of, respectively,Jk(r, t), J ′k(r, t) andJ ′′k (r, t)
(see appendix B, equations (B.6)–(B.8)). When summing the resulting expressions according
to the definition of equation (6.4), we can employ a suitable form forH2(r, t). The result turns
out to be

H2(r, t) = F2(r, t)−H(t − r/cT )
×{A[2]

1 (r) cos[ωo(t − r/cT )] + A[2]
2 (r) sin[ωo(t − r/cT )]} (6.11)
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with

F2(r, t) = −4
ω2
p

ω2
o

cos2 αH(t − r/cT )
∫ π/2

π/2−α
u(r, t, ζ )dζ.

A[2]
1 (r) = δ(t − r/cT )F2(r, t), andA[2]

2 (r) = ω−1
o δ(t − r/cT )[∂F2(r, t)/∂t ]. We observe

that the integrand ofF2(r, t) has the identical form as that ofF1(r, t) defined in (6.8). The
convergence of the initial series is now proved, and we are in a position to obtain the entire
integral form of the functionC2(r, t) expressed in (6.3). Summing (6.6) and (6.11) we obtain

C2(r, t) = F ′′(r, t)−H(t − r/cT ){D′′1(r) cos[ωo(t − r/cT )] + D′′2(r) sin[ωo(t − r/cT )]}
(6.12)

where

F ′′(r, t) = −2
ωo

ωp
H(t − r/cT ) 1

π

∫ π/2

0
eωp(r/cT ) cosζ cosζ cos(ωpt sinζ )

cos 2α + cos 2ζ
dζ.

D′′1(r) = A[1]
1 (r) + A[2]

1 (r), andD′′2(r) = −ωo + A[1]
2 (r) + A[2]

2 (r). Hence, both the leading
term and contributions of the jump in (6.12) are now amendable along the same lines as that
developed in the previous two sections, i.e. sections 4 and 5. The excited thermal plasma wave
component,φ[ω]

GB(r, t), is expressed as the sum of two terms as in (5.15), but, instead of (5.16),
the second term of the formula takes the form [21] of

C2(r, t) = −2ωpH(t − r/cT )Im31(iωpeiα(t − r/cT ), ωp(t2 − r2/c2
T )

1/2). (6.13)

The symbol Im denotes here the imaginary part of the complex quantity throughout, and the
notation3n(w, z) represents thenth-order modified two-variable Lommel functions of the
first kind [22]. Here, the first argumentw of these functions is complex.

It should be emphasized that there is a great variety of special function solutions of
linear differential equations such as the Klein–Gordon equation. If these solutions are too
complicated, their physical significance is not understood and they stand only as mathematical
curiosities. For the special functions considered in (6.13), mathematical properties and
numerical evaluation are now available [21, 22], so insight into physical behaviour of the
solution may be acquired without difficulty, in contrast to the classical analytical responses
which involve integrals [23, 24, 25]. An exact and algebraic representation of the plasma
response at the resonant excitation, i.e., the solution when the excitation frequency equals the
plasma frequency, may be deduced as a limit of the above solution. Then, not only does the
approach give the behaviour of the secular oscillations of the plasma, but it also clarifies and
highlights previous results on the radiation processes [21]. As an example of numerical result,
plotted in figure 3 is the space-time variation of the amplitude of an evanescent Bohm–Gross
wave. Note that description and analysis of the evolution of such a wave are given in [19].

7. Summary and concluding remarks

The response of an isotropic warm plasma subject to an external excitation may be represented
as the summation of two components as,φ(r, t) = φC(r, t) + φBG(r, t). The first term
corresponds to the potential that would exist in a cold plasma, while the second represents
a warm plasma wave field. The time evolution of the cold plasma response, although not
usually found in textbooks on plasma physics, is elementary and well known. It turns out to
be the sum of the external potential expressed by equation (4.1) or (5.1) and the collective
electron oscillations given by equation (4.3) or (5.3) for the impulsive or periodic temporal
excitation.
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Figure 3. As in figure 2, but(ωo/ωp) = 0.9. The evolution of the evanescent Bohm–Gross wave
is described.

On the other hand, the second response is known to be a solution of a non-homogeneous
linear Klein–Gordon equation. To deal with such an equation, an alternative approach based
on the theory of distributions (in the sense of L Schawrtz), associated with some mathematical
transforms and initiated by Robinson [1] has been proposed in this paper. Because of the linear
nature of the problem, the superposition principle applies and the resulting solution involves
a convolution integral of the Klein–Gordon fundamental solution and the source term. If the
source term can be expanded in terms of its moments via Poisson’s transform, it has been shown
thatφBG(r, t) is an infinite series of the derivatives of the fundamental Klein–Gordon solution
g0(r, t) defined in (3.5). A detailed description of the procedure has been presented. Several
important aspects of the theory that were not addressed in the original formulation of Robinson
[1] were revealed as a consequence. In particular, the effects of the simple discontinuity of
Green’s generalized function have been fully investigated.

The development exhibited above undoubtedly holds for a class of source term functions
of space and time. The physically motivated problems considered in this paper suggested,
however, a broader scope of the method. Expanding the driving force of the radiation equation
by means of Borel’s transform (closely related to Taylor development), it was shown that the
solution may be represented as a finite or infinite series of repeated integrals of the Green
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functiong0(r, t).
As a consequence, the exact algebraic expression of the impulsive response of the plasma

[2] was recovered by an approach different from the standard Laplace transform scheme. The
wave potential is given in terms of a Lommel function of two real variables defined in (4.21).
In addition, the equivalent exact representation of the longitudinal Bohm–Gross harmonic
wave, which agrees with the previous and more general result in [21], is also inferred. In this
case, equation (5.5) underlines the global form of the wave potentialφBG(r, t). Two distinct
components make up the solution. The first term, i.e. (5.8), involves a transient part of the
response. In the case of the propagating and dispersive wave situation (ωp < ω0), the second
term on the right-hand side of (5.5) takes the form of (5.16). In the case of the evanescent wave,
this second component takes the form of (6.13) and exhibits a modified Lommel function.

The excited medium under investigation is assumed to be an infinite fluid unmagnetized
electron plasma. Nevertheless, the subject presents some interesting aspects, in particular on
the improvement of the theoretical model for the response of active sounders in laboratory and
space plasma science. The solution of elementary examples, as undertaken here, is intended
to provide a theoretical basis for treatment of more complicated but realistic problems related
to experimental situations.

The work is applicable to a variety of wave propagation phenomena of plasma physics,
including electromagnetic waves, acoustic waves, etc. For instance, the cold plasma
electromagnetic wave expressed by Felsen and Marcuvitz [26], or by Borisov and Simonenko
[27] in terms of integrals of Bessel functions may be written and analysed more efficiently
by means of Lommel special functions. Similarly, an alternative formulation of the problem
of the ultra-wideband electromagnetic pulse propagation in the ionosphere [28] can also be
effected.
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Appendix A. On the Green function of the Klein–Gordon equation

In this appendix, an outline of the demonstration of equations (3.3)–(3.5), initially pointed out
in Robinson’s note [1], is presented.

The causal Green function is the solution of the particular excitation problem governed
by the inhomogeneous equation

Lg(r, t) ≡
(
− ∂

2

∂r2
+

1

c2
T

∂2

∂t2
+
ω2
p

c2
T

)
g(r, t) = δ(r)δ(t) (A.1)

with the prescribed Cauchy data,g(r, t 6 0) = 0, (∂/∂t)g(r, t 6 0) = 0.
In the sense of distribution, equation (A.1) can be differentiatedj times with regard tor,

andk times with regard tot . Using the commutative property of partial derivatives, one can
show that the functionϕ(r, t) = (∂j+kg(r, t)/∂rj ∂tk) satisfies the relation

Lϕ(r, t) = δ(j)(r)δ(k)(t). (A.2)

A simple illustration of the relevance of the above formalism may be glimpsed in the following
development.
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Morse and Feshbach [29] discussed the Green function of the Klein–Gordon equation in
three-dimensional space. They started with the equation of the form

∇2G(r, t)− 1

c2
T

∂2

∂t2
G(r, t)− ω

2
p

c2
T

G(r, t) = −4πδ3(r)δ(t) (A.3)

and found that its solution is given by

G(r, t) ≡ G(r, t) = 1

r

∂k(r, t)

∂r
(A.4)

with

k(r, t) = −cT H(t − r/cT )J0[ωp(t
2 − r2/c2

T )
1/2]. (A.5)

As k(r, t) is nothing but the functiong0(r, t) introduced in (3.5), our goal consists therefore in
demonstrating the equality between this function and the solution of (A.1).

As far as isotropic and spherically symmetric problems are concerned, we may write

∇2G(r, t) = 1

r2

∂

∂r

(
r2 ∂

∂r

)
G(r, t)

=
(
∂2

∂r2
+

2

r

∂

∂r

)
G(r, t) (A.6)

and

δ3(r) = 1

4πr2
δ(r). (A.7)

Substituting (A.6) and (A.7) in (A.3), it is easy to check that the resulting Green equation is
equivalent to

L[rG](r, t) = δ′(r)δ(t). (A.8)

The relationr−1δ(r) = −δ′(r) has been used when establishing (A.8). Now, let0(g, rG) be
the combination of convolution products defined by

0(g, rG) = g(r, t) ∗ L[rG](r, t)] − [rG](r, t) ∗ Lg(r, t). (A.9)

According to equations (A.1) and (A.8), equation (A.9) may be rewritten as

0(g, rG) = g(r, t) ∗ δ′(r)δ(t)− [rG](r, t) ∗ δ(r)δ(t)
= ∂g(r, t)

∂r
− rG(r, t). (A.10)

Furthermore, if we make use of Green’s theorem ([17] p 171, for example), we find that
0(g, rG) is expressible in the form

0(g, rG) =
∫
1

c−1
T

[
g(r − r1, t − t1)∂[rG](r1, t1)

∂t
− [rG](r − r1, t − t1)∂g(r1, t1)

∂t

]t+0

0

dr1

+
∫ t

0
dt1

∫
S

(
g(r − r1, t − t1)∂[rG](r1, t1)

∂r

− [rG](r − r1, t − t1)∂g(r1, t1)
∂r

)
dS (A.11)

whereS corresponds to the bounding surface of a spherical space domain1 of radiusR
(R → +∞), andt + 0 = limε→0(t + ε), (ε > 0). Using the physically acceptable initial and
boundary value conditions assumed for the solutionsg andG, it is a trivial matter to show that
the right-hand side of (A.11) vanishes. Consequently, we have the relation

G(r, t) = 1

r

∂g(r, t)

∂r
(A.12)

and, in so far as evolutionary responses which tend to zero atr → +∞ are involved, this
establishes the identity ofk(r, t) in (A.5) and the researched solutiong(r, t) of (A.1).
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Appendix B. Multiple iterated integral of the Green function

The following method has proved useful in order to evaluate the integral

Ik(r, t) =
∫ t

r/cT

. . .

∫ t

r/cT

h
[2]
1 (r, t)(dt)

2(k+1) (B.1)

where

h
[2]
1 (r, t) = −2ωpH(t − r/cT ) 1

π

∫ π/2

π/2−α
sinh[ωp(r/cT ) cosζ ] cosζ cos(ωpt sinζ ) dζ.

We start by noting that,(dn/dtn) cos(�t) = �n cos(�t +nπ/2). Although the relation is
valid for all integern, our particular interest here is inn = 2(k + 1), k > 0, and� = ωp sinζ ,
for which we can write

cos(ωpt sinζ ) = (−1)k+1

ω
2(k+1)
p sin2(k+1) ζ

d2(k+1)

dt2(k+1)
(cos(ωpt sinζ )). (B.2)

Upon integrating equation (B.2) 2(k + 1) times, we arrive at∫ t

r/cT

. . .

∫ t

r/cT

cos(ωpt sinζ )(dt)2(k+1)

= (−1)k+1

ω
2(k+1)
p sin2(k+1) ζ

∫ t

r/cT

. . .

∫ t

r/cT

d2(k+1)

dt2(k+1)
cos(ωpt sinζ )(dt)2(k+1). (B.3)

In the context of the derivation of the Taylor expansion of a functionf (x) of a real variablex
about a regular pointa, the Lagrange remainder of the series is established [30] as∫ x

a

. . .

∫ x

a

f (n)(x)(dx)n = f (x)−
n−1∑
j=0

(x − a)j
j !

f (j)(a) (B.4)

wheref (n) represents thenth-order derivative of thef . Using the formula (B.4), the right-hand
side of the equation (B.3) can be transformed and we have∫ t

r/cT

. . .

∫ t

r/cT

cos(ωpt sinζ )(dt)2(k+1) = (−1)k+1

ω
2(k+1)
p sin2(k+1) ζ

{
cos(ωpt sinζ )

−
2k+1∑
j=0

(t − r/cT )j
j !

(
dj

dt j
cos(ωpt sinζ )

)
t=r/cT

}

= (−1)k+1

ω
2(k+1)
p sin2(k+1) ζ

{
cos(ωpt sinζ )

+
k∑
l=0

(−1)l
ω2l+1
p sin2l+1 ζ

(2l + 1)!
(t − r/cT )2l+1 sin[ωp(r/cT ) sinζ ]

−
k∑
l=0

(−1)l
ω2l
p sin2l ζ

(2l)!
(t − r/cT )2l cos[ωp(r/cT ) sinζ ]

}
.

Making use of the definition of the functionh[2]
1 (r, t), the integralIk(r, t) may be expressed

as the sum

Ik(r, t) = Jk(r, t) + J ′k(r, t) + J ′′k (r, t) (B.5)
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where

Jk(r, t) = 2
(−1)k

ω2k+1
p

H(t − r/cT ) 1

π

∫ π/2

π/2−α
sinh[ωp(r/cT ) cosζ ]

cosζ cos(ωpt sinζ )

sin2(k+1) ζ
dζ (B.6)

J ′k(r, t) = 2
(−1)k

ω2k+1
p

H(t − r/cT )
k∑
l=0

(−1)l
ω2l+1
p

(2l + 1)!
(t − r/cT )2l+1

× 1

π

∫ π/2

π/2−α
sinh[ωp(r/cT ) cosζ ]

cosζ sin[ωp(r/cT ) sinζ ]

sin2(k−l) ζ
dζ (B.7)

and

J ′′k (r, t) = −2
(−1)k

ω2k+1
p

H(t − r/cT )
k∑
l=0

(−1)l
ω2l
p

(2l)!
(t − r/cT )2l

× 1

π

∫ π/2

π/2−α
sinh[ωp(r/cT ) cosζ ]

cosζ cos[ωp(r/cT ) sinζ ]

sin2(k−l+1) ζ
dζ. (B.8)
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